Maximum likelihood estimation of stochastic frontier models by the Fourier transform
نویسنده
چکیده
The paper is concerned with several kinds of stochastic frontier models whose likelihood function is not available in closed form. First, with output-oriented stochastic frontier models whose one-sided errors have a distribution other than the standard ones (exponential or half-normal). The gamma and beta distributions are leading examples. Second, with input-oriented stochastic frontier models which are common in theoretical discussions but not in econometric applications. Third, with two-tiered stochastic frontier models when the one-sided error components follow gamma distributions. Fourth, with latent class models with gamma distributed onesided error terms. Fifth, with models whose two-sided error component is distributed as stable Paretian and the one-sided error is gamma. The principal aim is to propose approximations to the density of the composed error based on the inversion of the characteristic function (which turns out to be manageable) using the Fourier transform. Procedures that are based on the asymptotic normal form of the loglikelihood function and have arbitrary degrees of asymptotic efficiency are also proposed, implemented and evaluated in connection with output-oriented stochastic frontiers. The new methods are illustrated using data for US commercial banks, electric utilities, and a sample from the National Youth Longitudinal Survey.
منابع مشابه
Stochastic Non-Parametric Frontier Analysis
In this paper we develop an approach that synthesizes the best features of the two main methods in the estimation of production efficiency. Specically, our approach first allows for statistical noise, similar to Stochastic frontier analysis, and second, it allows modeling multiple-inputs-multiple-outputs technologies without imposing parametric assumptions on production relationship, similar to...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملSpatial-temporal Stochastic Frontier Models
The stochastic frontier model with heterogeneous technical efficiency explained by exogenous variables is augmented with a sparse spatial autoregressive component for a crosssection data, and a spatial-temporal component for a panel data. An estimation procedure that takes advantage of the additivity of the model is proposed, computational advantages over simultaneous maximum likelihood estimat...
متن کاملA spectral approach to estimation and smoothing of continuous spatial processes
Abs t r ac t : This paper is concerned with developing computational methods and approximations for maximum likelihood estimation and minimum mean square error smoothing of irregularly observed two-dimensional stationary spatial processes. The approximations are based on various Fourier expansions of the eovariance function of the spatial process, expressed in terms of the inverse discrete Four...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005